Our Research

Nanoscale Electrochemistry

Nanoscale electrochemistry grants us a distinctive capability to understand the interfacial charge transfer processes with exceptional precision, creating enormous opportunities in catalysis, sensing, and energy storage. We develop nanometer-sized electrochemical probes and high–resolution electrochemical microscopy to characterize the chemical transformation at solid/electrolyte interfaces with the aid of modeling and simulations.

Van der Waals Materials for Catalysis

Van der Waals (vdW) heterostructures constructed through assembly of atomically thin two-dimensional (2D) layers have created rich opportunities for tuning the physical behaviors of materials as well as their interfacial chemical reactivities. We aim to engineer new types of 2D vdW constructs and investigate how vdW catalysts modulate the dynamics of energy conversion chemistry. Scanning probe methods coupled with optical and electronic characterization are used as the essential tools for these studies.

Nanoplasmonic Photoelectrochemistry

Noble metal nanoparticles are evolving as a new class of photocatalysts due to their efficient light harvesting ability via localized surface plasmon resonance (LSPR). The hot carriers generated through non-radiative decay of surface plasmon facilitate efficient interfacial photochemical reactions. We aim to explore the strategy of integrating plasmonic nanoparticles and semiconductor thin films to enhance the photochemical efficiency via tailoring the band alignment, light absorption, and surface reactivity of the hybrid structures.

Interested to know more? Please contact us here.

Chemistry & Biochemistry Department

College of Science

George Mason University